نوع مقاله : مقاله مروری نظام مند

نویسندگان

1 استاد، مدیریت اطلاعات سلامت، گروه مدیریت اطلاعات سلامت، دانشکده مدیریت و اطلاع‌رسانی پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران

2 دانشجوی کارشناسی ارشد، انفورماتیک پزشکی، کمیته تحقیقات دانشجویی، گروه مدیریت اطلاعات سلامت، دانشکده مدیریت و اطلاع‌رسانی پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران

چکیده

مقدمه: سیستم‌های مراقبت سلامت، سیستم‌های پیچیده‌ای می‌باشند که تحلیل و مهندسی مجدد آن‌ها دشوار است. مهندسان سیستم سلامت اغلب برای مدل‌سازی و شبیه‌سازی بخش‌های مختلف این سیستم‌ها، به زبان مدل‌سازی یکپارچه UML (Unified Modeling Language) تکیه می‌کنند. هدف از انجام پژوهش حاضر، شناسایی پرکاربرد‌ترین و کم‌کاربردترین نمودارهای UML و همچنین، دامنه کاربردهای این زبان در حوزه مراقبت سلامت جهت مستند‌سازی، تحلیل و طراحی کارامد سیستم‌ها بود.روش بررسی: این مطالعه به صورت مروری نظام‌مند انجام شد و در آن مقالات مربوط به کاربرد‌های UML در حوزه مراقبت سلامت طی بازه زمانی March سال 2010 تا July سال 2017 با استفاده از کلید واژه‌های معتبر از پایگاه‌های ‌داده‌ای Elsevier، PubMed، ProQuest، Web of Science و Scopus استخراج گردید. پس از غربالگری عنوان و چکیده تمام مقالات، 48 مقاله انتخاب و طی برگزاری دو جلسه هم‌اندیشی 12 ساعته مورد تحلیل و بررسی قرار گرفت.یافته‌ها: سه نمودار کلاس، فعالیت و مورد کاربرد و چهار نمودار مؤلفه، همکاری، شیء و پروفایل به ترتیب پر‌کاربردترین و کم‌کاربردترین نمودارهای UML در طراحی و مدل‌سازی حوزه‌های مختلف مراقبت سلامت بودند. در دامنه‌ کاربردها، گروه‌های زیرساخت‌ها، مدیریت بیماری‌ها و کشف دانش به ترتیب بیشترین استفاده از UML را داشتند.نتیجه‌گیری: با توجه به این‌ که UML تمام جنبه‌های سیستمی اعم از سخت‌افزار و نرم‌افزار را در سه حوزه زیرساخت‌ها، مدیریت بیماری‌ها و کشف دانش در برمی‌گیرد، می‌توان گفت که طراحی و مدل‌سازی این دامنه کاربردها با UML، امکان مهندسی مجدد و ارتقای سازمان‌ها را تسهیل می‌نماید و سیستم‌های تعاملی را به منظور حمایت از ارتباط بین بخش‌های مختلف سیستم مراقبت سلامت و همکاری بین شرکای پروژه توسعه می‌دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Application of Unified Modeling Language in Health Care Systems: A Systematic Review

نویسندگان [English]

  • Farahnaz Sadoughi 1
  • Khadijeh Moulaei 2

1 Professor, Health Information Management, Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran

2 MSc Student, Medical Informatics, Student Research Committee, Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran

چکیده [English]

Introduction: Health care systems are known as complex systems, which are difficult to analyze and reengineer. Health system engineers often rely on Unified Modeling Language (UML) to model and simulate various parts of these systems. The purpose of the current study was to identify the most widely used and least-practicable UML diagrams as well as the range of applications of this language in the field of health care for documenting, analyzing, and designing an efficient system.Methods: The study was a systematize review. All the articles related to UML applications in the field of health care were extracted from March 2010 to July 2017 using valid keywords from the Web of Science, PubMed, ProQuest, and Elsevier Scopus databases. After screening, 48 articles were selected and analyzed via two 12-hours concurrent sessions.Results: Three diagrams of class, activity, and use case were the most usable UML diagrams, and four diagrams of component, collaboration, object, and profile were the least used diagrams in designing and modeling in various fields of health care, respectively. In addition, in the domain of applications, infrastructure group, disease management, and knowledge discovery had the highest use of UML, respectively.Conclusion: Considering the fact that UML applications scopes over all aspects of the system in three areas of disease management, knowledge discovery, and health care infrastructure both in software and hardware systems, designing and modeling this application domain with UML will facilitate the reengineering and promotion of organizations, and develop interactive systems to support the linkages between different parts of the health care system and collaboration between project partners.

کلیدواژه‌ها [English]

  • Unified Modeling Language
  • Health Care
  • Modeling
  1. Jun GT, Ward J, Morris Z, Clarkson J. Health care process modelling: Which method when? Int J Qual Health Care 2009; 3(1): 214-24.
  2. Kaur A. Application of UML in real-time embedded systems. Int J Soft Eng Appl 2012; 3(2): 59-70.
  3. Ahmadi M, Ghazisaeidi M, Bashiri A. Radiology reporting system data exchange with the electronic health record system: A case study in Iran. Glob J Health Sci 2015; 7(5): 208-14.
  4. Rojo MG, Rolon E, Calahorra L, Garcia FO, Sanchez RP, Ruiz F, et al. Implementation of the business process modelling notation (BPMN) in the modelling of anatomic pathology processes. Diagn Pathol 2008; 3(Suppl 1): S22.
  5. Martin M, Champion R, Kinsman L, Masman K. Mapping patient flow in a regional Australian emergency department: A model driven approach. Int Emerg Nurs 2011; 19(2): 75-85.
  6. Ferrante S, Bonacina S, Pinciroli F. Modeling stroke rehabilitation processes using the Unified Modeling Language (UML). Comput Biol Med 2013; 43(10): 1390-401.
  7. Aggarwal V. The application of the unified modeling language in object-oriented analysis of healthcare information systems. J Med Syst 2002; 26(5): 383-97.
  8. Kumarapeli P, De Lusignan S, Ellis T, Jones B. Using Unified Modelling Language (UML) as a process-modelling technique for clinical-research process improvement. Med Inform Internet Med 2007; 32(1): 51-64.
  9. Cillessen FH, de Vries Robbe PF. Modeling problem-oriented clinical notes. Methods Inf Med 2012; 51(6): 507-15.
  10. Ramaiah M, Subrahmanian E, Sriram RD, Lide BB. Workflow and electronic health records in small medical practices. Perspect Health Inf Manag 2012; 9: 1d.
  11. Mattos SS, Hazin SM, Regis CT, Soares de Araujo JS, Albuquerque FC, Moser LR, et al. A telemedicine network for remote paediatric cardiology services in north-east Brazil. Bull World Health Organ 2015; 93(12): 881-7.
  12. Bonacina S, Marceglia S, Bertoldi M, Pinciroli F. Modelling, designing, and implementing a family-based health record prototype. Comput Biol Med 2010; 40(6): 580-90.
  13. Fanti MP, Mininel S, Ukovich W, Vatta F. Modelling alarm management workflow in healthcare according to IHE framework by coloured Petri Nets. Eng Appl Artif Intell 2012; 25(4): 728-33.
  14. Don Nickles H. An analysis of the literature on disease management programs. Proceedings of the Congressional Budget Office; 2004 Oct. 13; Washington, DC.
  15. Devedzic V. Knowledge discovery and data mining in databases. In: Chang SK, Editor. Handbook of software engineering & knowledge engineering. Washington, DC: World Scientific; 2001. p. 615-37.
  16. Schoenborn B. Big data analytics infrastructure for dummies. Hoboken, NJ: John Wiley & Sons, Inc; 2014.
  17. de Carvalho Junior MA. Bandiera-Paiva P. Health information system role-based access control current security trends and challenges. J Healthc Eng 2018; 2018: 6510249.
  18. de Carvalho EC, Jayanti MK, Batilana AP, Kozan AM, Rodrigues MJ, Shah J, et al. Standardizing clinical trials workflow representation in UML for international site comparison. PLoS One 2010; 5(11): e13893.
  19. de Carvalho EC, Batilana AP, Claudino W, Reis LF, Schmerling RA, Shah J, et al. Workflow in clinical trial sites & its association with near miss events for data quality: Ethnographic, workflow & systems simulation. PLoS One 2012; 7(6): e39671.
  20. Askari M, Westerhof R, Eslami S, Medlock S, de Rooij SE, Abu-Hanna A. A combined disease management and process modeling approach for assessing and improving care processes: A fall management case-study. Int J Med Inform 2013; 82(10): 1022-33.
  21. Blobel B, Goossen W, Brochhausen M. Clinical modeling-a critical analysis. Int J Med Inform 2014; 83(1): 57-69.
  22. Neumuth D, Loebe F, Herre H, Neumuth T. Modeling surgical processes: A four-level translational approach. Artif Intell Med 2011; 51(3): 147-61.
  23. Eguzkiza A, Trigo JD, Martinez-Espronceda M, Serrano L, Andonegui J. Formalize clinical processes into electronic health information systems: Modelling a screening service for diabetic retinopathy. J Biomed Inform 2015; 56: 112-26.
  24. Phull R, Liscano R, Mihailidis A. Comparative analysis of prominent middleware platforms in the domain of ambient assisted living (AAL) for an older adults with dementia (OAwD) scenario. Procedia Comput Sci 2016; 83: 537-44.
  25. Silva V, Joćo Cardoso M, Fonseca J, Cruz-Correia RJ. Study of Clinical Workflow and Information Flow of a Breast Care Unit. Proceedings of the 3rd International Conference on Health Informatics; 2010 Jan20-23; Valencia, Spain.
  26. Kok S, Rutherford AR, Gustafson R, Barrios R, Montaner JS, Vasarhelyi K. Optimizing an HIV testing program using a system dynamics model of the continuum of care. Health Care Manag Sci 2015; 18(3): 334-62.
  27. Shiki N, Ohno Y, Fujii A, Murata T, Matsumura Y. Unified Modeling Language (UML) for hospital-based cancer registration processes. Asian Pac J Cancer Prev 2008; 9(4): 789-96.
  28. Patterson T, Cleland I, Nugent CD, Black ND, McCullagh P, Zheng H. Towards a generic platform for the self-management of chronic conditions. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2014 Nov. 2-5; Belfast, UK.
  29. Toffetti G, Brunner S, Blochlinger M, Spillner J, Bohnert TM. Self-managing cloud-native applications: Design, implementation, and experience. Future Gener Comput Syst 2017; 72: 165-79.
  30. Guardia GD, Vencio RZ, de Farias CR. A UML profile for the OBO relation ontology. BMC Genomics 2012; 13(Suppl 5): S3.
  31. Choi J, Jansen K, Coenen A. Modeling a nursing guideline with standard terminology and unified modeling language for a nursing decision support system: A case study. AMIA Annu Symp Proc 2015; 2015: 426-33.
  32. Choi J, Choi JE. Representing nursing guideline with unified modeling language to facilitate development of a computer system: A case study. Stud Health Technol Inform 2014; 201: 181-7.
  33. De Backere F, Moens H, Steurbaut K, Colpaert K, Decruyenaere J, De Turck F. Towards automated generation and execution of clinical guidelines: Engine design and implementation through the ICU Modified Schofield use case. Comput Biol Med 2012; 42(8): 793-805.
  34. Abdullah M, Benest I, Paige R, Kimble C. Using unified modeling language for conceptual modelling of knowledge-based systems. In: Parent C, Schewe KD, Storey VC, Thalheim B, Editors. Conceptual Modeling-ER 2007. Berlin, Germany: Springer Science & Business Media; 2007. p. 438-53.
  35. Goyet S, Barennes H, Libourel T, van Griensven J, Frutos R, Tarantola A. Knowledge translation: A case study on pneumonia research and clinical guidelines in a low-income country. Implement Sci 2014; 9: 82.
  36. Sun Y, Yun R. UML modeling for software system of Edu-game. In: Pan Z, Zhong S, Pan Z, Yun R, Editors. Entertainment for education. Digital techniques and systems. Berlin, Germany: Springer Science & Business Media; 2010. p. 395-404.
  37. Kuchinke W, Karakoyun T, Ohmann C, Arvanitis TN, Taweel A, Delaney BC, et al. Extension of the primary care research object model (PCROM) as clinical research information model (CRIM) for the "learning healthcare system". BMC Med Inform Decis Mak 2014; 14: 118.
  38. Stav E, Walderhaug S, Mikalsen M, Hanke S, Benc I. Development and evaluation of SOA-based AAL services in real-life environments: A case study and lessons learned. Int J Med Inform 2013; 82(11): e269-e293.
  39. Cofiel L, Bassi DU, Ray RK, Pietrobon R, Brentani H. Detecting dissonance in clinical and research workflow for translational psychiatric registries. PLoS One 2013; 8(9): e75167.
  40. da Silva KR, Costa R, Crevelari ES, Lacerda MS, de Moraes Albertini CM, Filho MM, et al. Glocal clinical registries: Pacemaker registry design and implementation for global and local integration-methodology and case study. PLoS One 2013; 8(7): e71090.
  41. Kuo KL, Fuh CS. A rule-based clinical decision model to support interpretation of multiple data in health examinations. J Med Syst 2011; 35(6): 1359-73.
  42. Hoss A, Lampe C, Panse R, Ackermann B, Naumann J, Jakel O. First experiences with the implementation of the European standard EN 62304 on medical device software for the quality assurance of a radiotherapy unit. Radiat Oncol 2014; 9: 79.
  43. Jeddi FR, Farzandipoor M, Arabfard M, Hosseini AH. Conceptual model of clinical governance information system for statistical indicators by using UML in two sample hospitals. Acta Inform Med 2014; 22(2): 98-102.
  44. Lucas J, Bulbul T, Thabet W. An object-oriented model to support healthcare facility information management. Autom Constr 2013; 31: 281-91.
  45. Konstantinidis G, Anastassopoulos GC, Karakos AS, Anagnostou E, Danielides V. A user-centered, object-oriented methodology for developing Health Information Systems: A Clinical Information System (CIS) example. J Med Syst 2012; 36(2): 437-50.
  46. Kartawiguna D, Georgiana V. Model development of integrated web-based radiology information system with radio diagnostic imaging modality in radiology department. J Theor Appl Inf Technol 2014; 63(2): 350-61.
  47. Aruleba KD, Oriogun PK, Seluwa AG. Towards a model for enhancing ICT4 development and information security in healthcare system. Proceedings of the IEEE International Symposium on Technology and Society (ISTAS); 2015 Nov. 11-12; Dublin, Ireland.
  48. Arora D, Kumar U. Protecting sensitive warehouse data through UML based modeling. Proceedings of the International Conference on Informatics and Analytics; 2016 Aug. 25-26; Pondicherry, India.
  49. Kikuchi Y, Papadokonstantakis S, Banimostafa A, Sugiyama H, Hungerbuhler K, Hirao M. Analysis and modeling of information required for process assessment on environment, health, and safety by IDEF0 and UML. Computer Aided Chemical Engineering 2012; 31: 1392-6.
  50. Abomhara M, Lazrag MB. UML/OCL-based modeling of work-based access control policies for collaborative healthcare systems. Proceedings IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom); 2016 Sep. 14-16; Munich, Germany.
  51. Guiochet J. Hazard analysis of humanrobot interactions with HAZOPUML. Safety Science 2016; 84: 225-37.
  52. Chang PH. Modeling the management of electronic health records in healthcare information systems. Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery; 2011 Oct. 10-12; Beijing, China.
  53. Channin DS, Mongkolwat P, Kleper V, Sepukar K, Rubin DL. The caBIG annotation and image Markup project. J Digit Imaging 2010; 23(2): 217-25.
  54. Reynolds M, Vasilakis C, McLeod M, Barber N, Mounsey A, Newton S, et al. Using discrete event simulation to design a more efficient hospital pharmacy for outpatients. Health Care Manag Sci 2011; 14(3): 223-36.
  55. Martinez-Garcia A, Garcia-Garcia JA, Escalona MJ, Parra-Calderon CL. Working with the HL7 metamodel in a Model Driven Engineering context. J Biomed Inform 2015; 57: 415-24.
  56. Stojadinovic T, Radonjic V, Radenkovic B. E-business in the regulation of medicines in Serbia. Ther Innov Regul Sci 2010; 44(2): 177-87.
  57. Abugessaisa I, Gomez-Cabrero D, Snir O, Lindblad S, Klareskog L, Malmstrom V, et al. Implementation of the CDC translational informatics platform--from genetic variants to the national Swedish Rheumatology Quality Register. J Transl Med 2013; 11: 85.
  58. Vasilakis C, Lecnzarowicz D, Lee C. Application of unified modelling language (UML) to the modelling of health care systems. Int J Healthc Inf Syst Inform 2010; 3(4): 39-52.
  59. Priya SS, Malarchelvi PSK. Test path generation using UML sequence diagram. International Journal of Advanced Research in Computer Science and Software Engineering 2013; 3(4).
  60. van der Maas AA, ter Hofstede AH, ten Hoopen AJ. Requirements for medical modeling languages. J Am Med Inform Assoc 2001; 8(2): 146-62.
  61. Edwards N. Can quality improvement be used to change the wider healthcare system? Qual Saf Health Care 2005; 14(2): 75.
  62. Mishra SK, Upadhyay VR. Modeling of online clinical system using object-oriented data through UML. Int J Comput Appl 2014; 97(3): 37-43.
  63. Booch G. The unified modeling language user guide. London, UK: Pearson Education; 2005.
  64. Wong ST, Hoo KS Jr, Knowlton RC, Laxer KD, Cao X, Hawkins RA, et al. Design and applications of a multimodality image data warehouse framework. J Am Med Inform Assoc 2002; 9(3): 239-54.
  65. Gvozdanovic D, Desic S, Huljenic D. UML supported software design. Proceedings of the 2001 International Conference on Software, Telecommunications and Computer Networks. SoftCOM 2001; 2001 Oct. 9-12; Split, Dubrovnik.
  66. Burger E. Flexible views for view-based model-driven development. Karlsruhe, Germany: KIT Scientific Publishing; 2014.