نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی، علم اطلاعات و دانش‌شناسی، گروه علم اطلاعات و دانش‌شناسی، دانشکده علوم تربیتی و روان‌شناسی، دانشگاه اصفهان، اصفهان، ایران

2 دانشیار، علم اطلاعات و دانش‌شناسی، گروه علم اطلاعات و دانش‌شناسی، دانشکده علوم تربیتی و روان‌شناسی، دانشگاه اصفهان، اصفهان، ایران و دانشکده بیزینس انفورماتیک، دانشگاه کرووینوس، بوداپست، مجارستان

3 استاد، علم اطلاعات و دانش‌شناسی، گروه علم اطلاعات و دانش‌شناسی ،دانشکده علوم تربیتی و روان‌شناسی، دانشگاه اصفهان، اصفهان، ایران

4 دانشیار، علم اطلاعات و دانش‌شناسی، گروه علم اطلاعات و دانش‌شناسی، دانشکده علوم تربیتی، دانشگاه اصفهان، اصفهان، ایران

چکیده

مقدمه: دسترسی به اطلاعات کامل بیمار، نقش مهمی در بهبود مراقبت‌های بالینی و کاهش اشتباهات پزشکی دارد. در این خصوص، پرونده الکترونیک سلامت، قسمت اصلی یک سیستم اطلاعات سلامت یکپارچه محسوب می‌شود. هدف از انجام پژوهش حاضر، تحلیل کتاب‌سنجی و متن‌کاوی تولیدات علمی منتشر شده در حوزه پرونده الکترونیک سلامت در پایگاه PubMed بود.روش بررسی: این مطالعه به روش کتاب‌سنجی و متن‌کاوی در بازه زمانی سال‌های 2009 تا 2019 بر روی 6863 مقاله انجام شد. داده‌ها با استفاده از نرم‌افزارهای Excel و VOSviewer و ابزار Voyant مورد تجزیه و تحلیل قرار گرفت.یافته‌ها: در حوزه مورد نظر، موضوعات پرونده الکترونیک سلامت، سلامت، مراقبت بهداشتی و سیستم‌های مراقبت بهداشتی اهمیت زیادی در پایگاه PubMed داشت. تولید مقالات در حوزه پرونده الکترونیک سلامت طی ده سال روندی صعودی را نشان داد و کشور آمریکا پرتولیدترین کشور در این حوزه بود. بیشترین مقالات به David Bates، Dean Sittig و Hardeep Singh اختصاص داشت.نتیجه‌گیری: نقشه هم‌رخدادی واژگان برای هر کدام از واژه‌ها، نماینده یک مفهوم یا حوزه تحقیقاتی در سلامت می‌باشد. نتایج به دست آمده می‌تواند دید روشنی به منظور سیاست‌گذاری علمی این حوزه برای تأثیرگذاری بر تخصیص و توزیع منابع در فعالیت‌های علمی و فنی ارایه نماید. همچنین، می‌تواند به محققان در انتخاب موضوعات داغ و کسب بینش جامعی از چارچوب علمی حوزه مورد نظر کمک نماید.

کلیدواژه‌ها

عنوان مقاله [English]

Combined Bibliometric and Text-Mining Analysis of Scientific Productions in PubMed Database in the Field of Electronic Health Records

نویسندگان [English]

  • Mahboobeh Shokouhian 1
  • Asefeh Asemi 2
  • Ahmad Shabani 3
  • Mozafar Cheshme-Sohrabi 4

1 PhD Student, Knowledge and Information Science, Department of Knowledge and Information Science, School of Education and Psychology, University of Isfahan, Isfahan, Iran

2 Associate Professor, Knowledge and Information Science, Department of Knowledge and Information Science, School of Education and Psychology, University of Isfahan, Isfahan, Iran AND School of Business Informatics, Corvinus University, Budapest, Hungary

3 Professor, Knowledge and Information Science, Department of Knowledge and Information Science, School of Education and Psychology, University of Isfahan, Isfahan, Iran

4 Associate Professor, Knowledge and Information Science, Department of Knowledge and Information Science, School of Education and Psychology, University of Isfahan, Isfahan, Iran

چکیده [English]

Introduction: Access to patient’s complete information is critical in improving clinical care and reducing medical errors. Electronic Health Record is a collection of individuals' health information, from prenatal to posthumous, which is stored electronically, is available at any center and at any time, and is an integral part of an integrated health information system. The purpose of the present study was bibliometric and text-mining analyze of scientific products in the field of Electronic Health Records in PubMed database.Methods: This present study was carried out using bibliometric method and text mining. The study was conducted in the academic year of 2019 in PubMed database on the period of 2009-2019, and 6863 articles were selected for review. Excel, VOSviewer and Voyant were used for data analysis.Results: In the studied field, issues of electronic health records, health, health care, information, health care systems were of great importance in PubMed. Developing articles in this field had been on the rise for ten years, and the United States was the most productive country in the field. David Bates, Dean Sittig, and Hardeep Singh had the most articles in the field of study.Conclusion: Each item of co-occurring vocabulary map can represent a concept or research area in health. The findings can provide a clear insight to scientific policymaking of this field to influence the allocation and distribution of resources for scientific and technical activities. It can also help researchers in selecting the state-of-the-art topics and having a comprehensive insight into the academic context of the field.

کلیدواژه‌ها [English]

  • PubMed
  • Scientific Productions
  • Electronic Health Records
  • Bibliography
  • Text Mining
  1. Fenton SH, Low S, Abrams KJ, Butler-Henderson K. Health information management: changing with time. Yearb Med Inform 2017; 26(1): 72-7.
  2. Ramzani Sharestani M. Verification of design parameters of health care information systems [MSc Thesis]. Rasht, Iran: University of Guilan; 2015. [In Persian].
  3. Evans RS. Electronic health records: Then, now, and in the future. Yearb Med Inform 2016; (Suppl 1): S48-S61.
  4. van Eck NJ, Waltman L, Noyons EC, Buter RK. Automatic term identification for bibliometric mapping. Scientometrics 2010; 82(3): 581-96.
  5. Callon M, Courtial JP, Turner WA, Bauin S. From translations to problematic networks: An introduction to co-word analysis. Social Science Information 1983; 22(2): 191-235.
  6. Chen X, Liu Z, Wei L, Yan J, Hao T, Ding R. A comparative quantitative study of utilizing artificial intelligence on electronic health records in the USA and China during 2008-2017. BMC Med Inform Decis Mak 2018; 18(Suppl 5): 117.
  7. Chen X, Xie H, Wang FL, Liu Z, Xu J, Hao T. A bibliometric analysis of natural language processing in medical research. BMC Med Inform Decis Mak 2018; 18(Suppl 1): 14.
  8. Yao Q, Chen K, Yao L, Lyu PH, Yang TA, Luo F, et al. Scientometric trends and knowledge maps of global health systems research. Health Res Policy Syst 2014; 12: 26.
  9. Han D, Wang S, Jiang C, Jiang X, Kim HE, Sun J, et al. Trends in biomedical informatics: Automated topic analysis of JAMIA articles. J Am Med Inform Assoc 2015; 22(6): 1153-63.
  10. Wen HC, Ho YS, Jian WS, Li HC, Hsu YH. Scientific production of electronic health record research, 1991-2005. Comput Methods Programs Biomed 2007; 86(2): 191-6.
  11. Iranpour A, Haghdoost A A, Bazrafshan A, Okhovati M, Sharifpoor E, Zare M, et al . Bibliometric and content analysis of scientific outputs relevant to health education and promotion in iran during 1998-2011. Health Develop J 2017; 6(2): 144-53. [In Persian].
  12. Janssens F. Clustering of scientific fields by integrating text mining and bibliometrics [PhD Thesis]. Leuven, Belgium: Catholic University of Leuven; 2007.
  13. Heimerl F, Lohmann S, Lange S, Ertl T. Word cloud explorer: Text analytics based on word clouds. Proceedings of 47th Hawaii International Conference on System Sciences; 2014 Jan 6-9; Waikoloa, HI, USA. p. 1833-42.
  14. van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010; 84(2): 523-38.
  15. Google Scholar. David Bates. Professor of Medicine, Harvard Medical School [online]. Available from: URL: https://scholar.google.com/citations?user=fQFJcdQAAAAJ&hl=en&oi=ao
  16. Google Scholar. Dean F. Sittig. Professor of Biomedical Informatics, University of Texas [Online]. Available from: URL: https://scholar.google.com/citations?user=rrAE9l4AAAAJ&hl=en&oi=ao
  17. Google Scholar. Hardeep Singh. Chief, Health Policy, Quality, and Informatics Program, Houston VA HSRD Center of Innovation [Online]. Available from: URL: https://scholar.google.com/citations?user=quszY0gAAAAJ&hl=en&oi=ao