نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، انفورماتیک پزشکی، دانشکده‌ی پیراپزشکی، دانشگاه علوم پزشکی تهران، تهران، ایران

2 دانشیار، آمار زیستی، دانشکده‌ی مدیریت و اطلاع‌رسانی پزشکی، دانشگاه علوم پزشکی تهران، تهران، ایران

3 کارشناس ارشد، مدارک پزشکی، دانشکده‌ی مدیریت و اطلاع‌رسانی پزشکی، دانشگاه علوم پزشکی تهران، تهران، ایران

چکیده

مقدمه: مدل پذیرش فن‌آوری برای توصیف رفتار افراد در ارتباط با سیستم‌های اطلاعاتی به‌کار برده می‌شود. در پژوهش حاضر سعی شده است تا با استفاده از این مدل عوامل مؤثر بر پذیرش سیستم اطلاعات بیمارستان در بیمارستان‌های آموزشی دانشگاه علوم پزشکی تهران شناسایی شوند. روش بررسی: این پژوهش یک مطالعه‌ی توصیفی از نوع همبستگی بود که در سال 1390 انجام گردید. جامعه‌ی آماری آن را 185 نفر از پرسنل شاغل در ادارات مدارک پزشکی بیمارستان‌های آموزشی دانشگاه علوم پزشکی تهران تشکیل می‌دادند. ابزار گردآوری داده‌ها، پرسش‌نامه‌ی محقق‌ساخته براساس مطالعات مشابه بودکه روایی آن توسط کمیته‌ی خبرگان و پایایی آن قبل از انجام مطالعه در یک نمونه‌ی 50 نفری با استفاده از روش آلفای کرونباخ (93/0=a) بررسی و تأیید گردید. به‌منظور تحلیل داده‌ها از آمار توصیفی (توزیع درصد فراوانی) و ضریب همبستگیSpearman در محیط نرم‌افزار آماری SPSS نسخه‌ی 18 استفاده گردید. یافته‌ها: یافته‌ها نشان داد که بین برداشت ذهنی از مفید بودن و تصمیم به استفاده (521/0=r ، 01/0Pvalue<)، بین برداشت ذهنی از سهولت استفاده و تصمیم به استفاده (469/0=r ، 01/0Pvalue<)، بین خودکارآمدی و تصمیم به استفاده (548/0=r ، 01/0Pvalue<)، بین حمایت کاربر نهایی و تصمیم به استفاده (399/0= r، 01/0Pvalue<)، بین هنجار اجتماعی و تصمیم به استفاده (383/0= r، 01/0Pvalue<)، بین اعتماد و تصمیم به استفاده (501/0=r ، 01/0Pvalue<)، بین ارتباط شغلی و تصمیم به استفاده (587/0=r ، 01/0Pvalue<) و بین آموزش و تصمیم به استفاده (263/0= r، 05/0Pvalue<) همبستگی مثبت وجود داشت، اما بین نگرانی و تصمیم به استفاده (150/0= r، 01/0Pvalue<)، بین اختیاری بودن و تصمیم به استفاده (147/0-= r، 01/0Pvalue<) و بین شرایط تسهیل کننده و تصمیم به استفاده (046/0= r، 01/0Pvalue<) همبستگی مشاهده نگردید. نتیجه‌گیری: براساس نتایج حاصل از پژوهش می‌توان اینگونه نتیجه‌گیری کرد که توجه به عوامل مؤثر بر پذیرش کاربران می‌تواند منجر به استفاده بیش‌تر از فن‌آوری‌های جدید در بخش مدارک پزشکی بیمارستان‌ها گردد. هم‌چنین از نتایج این پژوهش می‌توان در راستای بهبود سیستم‌های جدید استفاده کرد، به‌طوری که با نیازهای کاربران تناسب بیشتری داشته باشند. واژه‌های کلیدی: سیستم‌های اطلاعات بیمارستان؛ فن‌آوری؛ بخش مدارک پزشکی 

کلیدواژه‌ها

عنوان مقاله [English]

Acceptance of Hospital Information System among Medical Records Users Based on Technology Acceptance Model

نویسندگان [English]

  • Mostafa Langarizadeh 1
  • Mahmudreza Gohari 2
  • Azita Koohestani 3

1 Assistant Professor, Medical Informatics, Faculty of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran

2 Associated Professor, Biostatistics, Faculty of Health Management and Medical Information Sciences, Tehran University of Medical Sciences, Tehran, Iran

3 Medical Records, Faculty of Health Management and Medical Information Sciences, Tehran University of Medical Sciences, Tehran, Iran

چکیده [English]

Introduction: Technology Acceptance Model is used to describe human behavior in relation to the information systems. Concentrating on the model, the present research tries to recognize and examine the factors affecting the hospital information system in the teaching hospitals of Tehran University of Medical Sciences. Methods: This paper was a cross- sectional and correlation study conducted in 1390 AH (March 19, 2011 to March 20, 2012). The research population covered 185 respondents including the medical records personnel of the teaching hospitals of Tehran University of Medical Sciences. The data were gathered using a questionnaire (developed by the author comparing the similar studies), which validity was confirmed by a committee of experts and the reliability was calculated (before the study began) using a Cronbach α (α=0.93) in a 50 people sample. The descriptive statistics and non-parametrical analysis of the Spearman rank correlation was applied to the data analysis using an SPSS18. Results: The findings suggested a positive correlation individually between Behavioral Intention and the factors of perceived usefulness (Pvalue<0.01, r=0.521), perceived ease of use (Pvalue<0.01, r=0.469), self efficacy (Pvalue<0.01, r=0.548), end user support (Pvalue<0.01, r=0.399), social norms (Pvalue<0.01, r=0.383), Trust (Pvalue<0.01, r=0.501), job relations (Pvalue<0.01, r=0.587), and training (Pvalue<0.05, r=0.263), but no correlation was seen between Behavioral Intention and the factors of anxiety (Pvalue<0.01, r=0.150), voluntariness (Pvalue<0.01, r=0.147), and facilitating conditions (Pvalue<0.01, r=0.046). Conclusion: Based on the results obtained from this study, it could be concluded that pay more attention to the factors affected on users’ acceptance may caused to more usage of new technologies in medical records departments. In addition, the results of such studies could be useful in terms of designing new systems to make better coverage on users needs. Keywords: Hospital Information Systems; Technology; Medical Records Department

کلیدواژه‌ها [English]

  • Hospital Information Systems
  • Technology
  • Medical Records Department
  1. Aggelidis VP, Chatzoglou PD. Using a modified technology acceptance model in hospitals. Int J Med Inform 2009;78(2):115-26.
  2. Hajavi A, Zohor A. Analysis of patient information cycle in hospital information systems of oromie university of medical sciences. Proceedings of the 4th conference of electronic health; 2004.[In Persian]
  3. Alquraini H, Alhashem AM, Shah MA, Chowdhury R. Factors influencing nurses' attitudes towards the use of computerized health information systems in Kuwaiti hospitals. J Adv Nurs 2007;57(4):375-81.
  4. Gupta SK, Kant S, Chandrashekhar R, S.Satpathy. Modern trends in planning and designing of hospital principles and practice. New Delhi: Jaypee Brothers 2007.
  5. Kimiyafar K. A study of users views about hospital information system quality in teaching hospitals of mashhad university of medical sciences [M.S Thesis in Persian]. Tehran: Iran Univ. Medical Sciences;2006.
  6. Foster R. Human factors in health information systems: The Western Cape Experience. Department of the Premier: Provincial Government of the Western Cape; 2005.
  7. Mohaghar A, Shirmohammadi M. Developing of TAM in ministry of interior. Knowledge Management 2004;67(17):114-31.[In Persian]
  8. Chismar WG, Willey-Patton S. Test of the technology acceptance model for the internet in pediatrics. The 36th Hawaii international conference. Honolulu: Management Science Hawaii;2002.
  9. Scott R. E-records in health- preserving our future. Int J Med Inform 2007;76(5-6):427-31.
  10. Algahtani SS, King. M. Attitudes, satisfaction and usage: factors contributing to each in the acceptance of information technology. Behav Inf Technol 1999;18(4):277-97.
  11. Kijsanayotin B, Pannarunothai S, Speedie S. Factors influencing health information technology adoption in Thailand،s community health centers: applying the UTAUT model. Int J Med Inform 2009;78(6):404-16.
  12. Schaper LK, Pervan G. ICTs & OTs: a model of information and communications technology acceptance and utilisation by occupational therapista (part2). Stud Health Technol Inform 2007;130:91-101.
  13. Yi MY, Jackson JD, Park JS, Probst JC. Understanding information technology acceptance by individual professionals: Toward an intergative view. Inf Management 2006;43(3):350-63.
  14. Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly 1989;13(3):319-39.
  15. Venkatesh V, Davis FD. A theoretical extension of the technology acceptance model: four longitudinal field studies. Management Sci 2000;46(2):186-204.
  16. Ketikidis P, Dimitrovski T, Bath P, Lazuras L. Acceptance of health information technology in health professionals: An application of the revised technology acceptance model. Health Inform J 2012;18(2):124-34.
  17. Chau PYK, Hu PJH, Sheng OLR, Tam KY, Fung H. Investigating physician acceptance of telemedicine technology: A survey study in Hong Kong. Proceedings of the 32nd Hawaii international conference on system sciences. Maui: Hawaii;1999.
  18. Venkatesh V, Morris MG, Davis FD, Davis G. User acceptance of information technology: Toward a unified view. MIS Quarterly 2003;27(3):425-78.
  19. Hung SY, Hung WH, Tsai CA, Jiang SC. Critical factors of hospital adoption on CRM System: Organizational and information system perspectives. Decis Support Syst 2010;48(4):592-603.
  20. Tabibi J, Nasiripour AA, Baradaran Kazemzadeh R, Farhangi AA, Ebrahimi P. Effective factors on hospital information system acceptance: A confirmatory study in Iranian hospitals. Middle-East J Sci Res 2011;9(1):95-101.
  21. McGill TJ, Bax S. From beliefs to success: Utilizing an expanded TAM to predict web page development success. Int J of Technol Hum Interac 2007;3(3):36-53.
  22. Chang P. The validity of an extended technology acceptance model (TAM) for predicting internet/portal usage [M.S Thesis]. Chapel Hill: Univ. North Carolina;2004.
  23. Davis FD, Bagozzi RP, Warshaw PR. User acceptance of computer technology: A comparison of two theoretical models. Management Sci 1989;35(8):982-1003.
  24. Tung FC, Chang SC, Chou CM. An extension of trust and TAM model with IDT in the adoption of the electronic logistics information system in HIS in the medical industry. Int J Med Inform 2008;77(5):324-35.
  25. Yu P, Li H, Gagnon MP. Health IT acceptance factors in long-term care facilities: A cross-sectional survey. Int J Med Inform 2009;78(4):219-29.
  26. Mathieson K. Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Inf Syst Res 1991;2(3):173-91.
  27. Orr S, Sohal AS, Gray K, Harbrow J, Harrison D, Mennen A. The impact of information technology on a section of the healthcare industry. Int J Benchmarking 2001;8(2):108-19.
  28. Wu JH, Shen WS, Lin LM, Greenes RA, Bates DW. Testing the technology acceptance model for evaluating healthcare professionals, intention to use an adverse event reporting system. Int J Qual Health Care 2008;20(2):123-9.
  29. Duyck P, Pynoo B, Devolder P, Voet T, Adang L, Ovaere D, et al. Monitoring the PACS implementation process in large university hospital discrepancies between radiologists and physicians. Digit Imaging 2010;23(1):73-80.
  30. Wu JH, Wang SC, Lin LM. Mobile computing acceptance factors in the healthcare industry: A structural equation model. Int J Med Inform 2007;76(1):66-77.
  31. Monzavi T, Zarei B. Designing a model to explicate factors influence the process of IT user adoption: A research about Iranian offshore engineering and construction company. Journal of Iranian Technology Management 2010;2(5):129-48. [In Persian]
  32. Duyck P, Pynoo B, Devolder P, Voet T, Adang L, Vercruysse J. User acceptance of a picture archiving and communication system: Applying the unified theory of acceptance and use of technology in a radiological setting. Methods Inf Med 2008;47(2):149-56.
  33. Wilkins M. Factors influencing acceptance of electronic health records in hospitals. Perspect in Health Inf Management 2009;6:1f.
  34. Bertrand M, Bouchard S. Applying the technology acceptance model to VR with people who are favorable to its use. J Cyber & Rehabil 2008;1(2):200-7.
  35. Kowitlawakul Y. The technology acceptance model: Predicting nurses; intention to use telemedicine technology. Comput Inform Nurs 2011;29(7):411- 8.
  36. Huang WM, Shih C. An empirical study on the intentions of physicians in adopting electronic medical records with modified technology acceptance models in rural areas of Taiwan. Pacific Asia Conference on Information Systems (PACIS), Brisban: Australia; 2011.