نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی، مهندسی نرم‌افزار، گروه کامپیوتر و برق، مؤسسه آموزش عالی جهاد دانشگاهی رشت، رشت، ایران

2 مربی، ریاضی کاربردی، گروه کامپیوتر و برق، مؤسسه آموزش عالی جهاد دانشگاهی رشت، رشت، ایران

چکیده

مقدمه: پس از به کارگیری روش‌های درمان سرطان پستان، احتمال عود مجدد بیماری وجود دارد. هدف از انجام پژوهش حاضر، به کارگیری تکنیک‌های داده‌کاوی به منظور ارایه مدل‌های پیش‌بینی عود مجدد سرطان پستان بود.روش بررسی: در این مطالعه توصیفی، از 18 ویژگی مربوط به 809 بیمار مبتلا به سرطان پستان استفاده شد. برای ایجاد مدل پیش‌بینی عود مجدد سرطان پستان در مرحله پیش‌پردازش مجموعه داده، از الگوریتم‌های بیشینه‌سازی امید ریاضی EM (Expectation Maximization) و درخت تصمیم دسته‌بندی و رگرسیون C and R (Classification and Regression) استفاده گردید. سپس در مرحله یادگیری مدل، پنج الگوریتم داده‌کاوی شامل شبکه‌های عصبی، درخت تصمیم C and R، درخت تصمیم 5C، شبکه Bayes و ماشین بردار پشتیبان SVM (Support Vector Machine) به کار گرفته شد. در نهایت، جهت ارزیابی کارایی تکنیک‌های مورد استفاده، الگوریتم درخت تصمیم 48J با K-Fold برابر 10 و روش‌های آنالیز داده‌ها مورد استفاده قرار گرفت.یافته‌ها: دقت الگوریتم‌های EM و C and R در مرحله پیش‌پردازش داده‌ها به ترتیب 641/0 و 420/0 بود. دقت پنج الگوریتم به کار رفته در مرحله یادگیری مدل نیز به ترتیب 858/0، 865/0، 870/0، 883/0 و 998/0 به دست آمد.نتیجه‌گیری: مدلی که در مرحله پیش‌پردازش از الگوریتم EM و در مرحله یادگیری از الگوریتم SVM بهره می‌گیرد، کارایی بالاتری نسبت به سایر مدل‌های ایجاد شده دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Comparing the Functionality of Predicting Models for Breast Cancer Recurrence Based on Data Mining Techniques

نویسندگان [English]

  • Elham Mirzakazemi 1
  • Mohammad Ghamgosar-Naseri 2

1 Lecturer, Computer Software Engineering, Department of Computer and Electrical, Institute of Higher Education, Rasht Academic Center for Education, Culture and Research (ACECR), Rasht, Iran

2 Lecturer, Applied Mathematics, Department of Computer and Electrical, Institute of Higher Education, Rasht Academic Center for Education, Culture and Research (ACECR), Rasht, Iran

چکیده [English]

Introduction: After applying breast cancer treatment methods, there is a possibility of recurrence of the disease. The aim of the present study was using data mining techniques in order to provide predicting models for breast cancer recurrence.Methods: 18 features of 809 patients were used in the current descriptive study. The study consisted of two phases, preprocessing phase and model learning. Expectation Maximization (EM) and Classification and Regression (C and R) were used for the analysis of the first phase. In order to analyze the second phase, the five algorithm model including Neural Network, C and R, the decision tree algorithm C5.0, Bayes Net, and Support Vector Machine (SVM) was used.Results: The accuracy of the EM and C and R algorithms was 0.641 and 0.420, respectively, in the preprocessing phase. The accuracy of Neural Network, C and R, the decision tree algorithm C5.0, Bayes Net, and SVM algorithms was 0.858, 0.865, 0.870, 0.883, and 0.998, respectively, for the model learning phase.Conclusion: According to the findings, the model with the application of EM algorithm in the first phase and SVM algorithm in the second phase had the highest functionality. It was also important in determining the treatment process.

کلیدواژه‌ها [English]

  • Data Mining
  • Recurrence
  • Breast Cancer
  • Algorithm
  1. Noori Daloii MR, Tabarestani S. Molecular genetics, diagnosis and treatment of breast cancer: Review article. J Sabzevar Univ Med Sci 2010; 17(2): 74-87. [In Persian].
  2. Mirmalek SA, Elham Kani F. Clinical application of breast cancer biology review of literature. Iran J Surg 2009; (17): 1-6. [In Persian].
  3. Roohparvarzade N, Ghadery M, Parsa A, Allahyary A. Prevalence of risk factors for breast cancer in women (20 to 69 Years old) in Isfahan 2012-2013. Iran J Breast Dis 2014; 1(1): 52-61. [In Persian].
  4. Latif AM, Momeny M, Sarram R, Agha Sarram M, Pour Ahmadi A, Haj Ebrahimi Z. Using data mining and genetic algorithm for diagnosis of breast cancer. Iran J Breast Dis 2016; 9(1): 45-56. [In Persian].
  5. Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. Proceedings of the 5th Annual Workshop on Computational Learning Theory; 1992 Jul 27-29; Pittsburgh, Pennsylvania, USA. p. 144-52.
  6. American Cancer Society. Breast cancer facts and figures 2015-2016. Atlanta, GA: American Cancer Society, Inc; 2015.
  7. Toluei Ashlaghi A, Poorebrahimi A, Ebrahimi M, Ghasem Ahmad L. Using data mining techniques for prediction breast cancer recurrence. Iran J Breast Dis 2013; 5(4): 23-34. [In Persian].
  8. Ravi Kumar G, Ramachandra GA, Nagamani K. An efficient prediction of breast cancer data using data mining techniques. International Journal of Innovations in Engineering and Technology 2013; 2(4): 139-44.
  9. Delen D, Walker G, Kadam A. Predicting breast cancer survivability: A comparison of three data mining methods. Artif Intell Med 2005; 34(2): 113-27.
  10. Choi JP, Han TH, Park RW. A hybrid bayesian network model for predicting breast cancer prognosis. J Korean Soc Med Inform 2009; 15(1): 49-57.
  11. Shajahaan S, Shanthi S, Mano Chitra V. Application of data mining techniques to model breast cancer data. International Journal of Emerging Technology and Advanced Engineering 2013; 3(11): 362-9.
  12. Subasini A, Abubacker NF, Rekha C. Analysis of classifier to improve medical diagnosis for breast cancer detection using data mining techniques. Int J Advanced Networking and Applications 2014; 5(6): 2117-22.
  13. Kulkarni S, Bhagwat M. Predicting breast cancer recurrence using data mining techniques. Int J Comput Appl 2015; 122(23): 26-31.
  14. Kiani B, Atashi A. A prognostic model based on data mining techniques to predict breast cancer recurrence. Journal of Health and Biomedical Informatics 2014; 1(1): 26-31. [In Persian].