نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی صنایع، گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه صنعتی مالک‌اشتر، تهران، ایران

2 استاد، مهندسی صنایع، گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه صنعتی مالک‌اشتر، تهران، ایران

چکیده

مقدمه: سنجش کارایی و بهره‌وری، یکی از مهم‌ترین چالش‌های پیش روی مدیران در مراکز بهداشتی و درمانی می‌باشد. مطالعه حاضر با هدف توسعه رویکردی تلفیقی از تحلیل پوششی داده‌ها DEA (Data Envelopment Analysis) و شاخص Malmquist جهت ارزیابی عملکرد تیم‌های سلامت خانواده بهداشت و درمان صنعت نفت اصفهان انجام شد.روش بررسی: این تحقیق از نوع همبستگی بود و در آن با تعریف شاخص‌های ورودی و خروجی تأثیرگذار بر عملکرد تیم‌های سلامت خانواده صنعت نفت اصفهان، کارایی در دو بازه زمانی مختلف مشخص و با محاسبه چهار تابع مسافت، میزان رشد بهره‌وری واحدها در طول این دو بازه زمانی نیز تعیین گردید. داده‌ها از نرم‌افزار سلامت خانواده نفت (سخن) استخراج شد و کارایی نسبی و نرخ رشد بهره‌وری با استفاده از روش DEA و شاخص بهره‌وری Malmquist مورد بررسی قرار گرفت. همچنین، با تحلیل حساسیت، خروجی‌های تأثیرگذار بر کارایی واحدها مشخص گردید.یافته‌ها: تیم‌های سلامت خانواده نفت اصفهان در دو بازه زمانی مختلف بر اساس کارایی نسبی رتبه‌بندی شدند و نرخ رشد بهره‌وری آن‌ها در این فاصله مشخص گردید. مهم‌ترین شاخص تأثیرگذار بر کارایی و بهره‌وری، تعداد ویزیت پزشک خانواده بود. داده‌های مورد نیاز در بازه زمانی سال‌های 1394 و 1395 جمع‌آوری شد.نتیجه‌گیری: تصمیم‌گیری بر اساس معیارهای مختلف را می‌توان از جمله مهم‌ترین دستاوردهای این روش بیان نمود که امکان ارزیابی کارایی و بهره‌وری را در حوزه سلامت میسر می‌سازد. توسعه کاربردی تحقیق حاضر می‌تواند برای ارتقای ظرفیت در حوزه‌های مختلف خدمات بهداشتی- درمانی و صرفه‌جویی در منابع مورد استفاده قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Performance Analysis of Family Health Teams in Petroleum Industry Health Organization: Integrative Approach of Data Envelopment Analysis and Malmquist

نویسندگان [English]

  • Meysam Azimian 1
  • Peyman Akhavan 2

1 PhD Student, Industrial Engineering, Department of Industrial Engineering, School of Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran

2 Professor, Industrial Engineering, Department of Industrial Engineering, School of Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran

چکیده [English]

Introduction: Analysis of performance and productivity is one of the most important challenges for managers in the health centers. In this study, an integrative approach of Data Envelopment Analysis (DEA) and Malmquist productivity indicator was used for performance analyses of family health teams in clinics affiliated to Isfahan Petroleum Industry Health Organization (PIHO), Iran.Methods: This was a correlational research in terms of research problem. Therefore, by determining indicators of input and output affecting the performance of family health teams, relative performance was specified at different times. Then, by calculating the four-way distance, the growth rate of unit productivity was determined during these timeframes. Data were also extracted from PIHO Family Health database (Sokhan) and integrative approaches of DEA and Malmquist productivity indicator were used for productivity analysis. Finally, sensitivity analysis was used for determining important output variables. The data for this research were collected during the years 2015 and 2016.Results: Isfahan PIOH family health teams were ranked for two different timeframes based on their relative performance. Furthermore, their productivity growth rates were also calculated at these intervals. The most important factor affecting the efficiency and effectiveness was family visits.Conclusion: Decision making based on different criteria for the evaluation of health efficiency and performance, can be one of the most important achievements of this method. The application of this study can be used to enhance the capacity of various health services, and to save resources.

کلیدواژه‌ها [English]

  • Performance Evaluation
  • Data Analysis
  • Malmquist
  1. Barooni M, Rahbar A, Abzareh A, Hami Parsa H. The estimation of technical efficiency of public hospitals in Qom using Data envelopment analysis approach. J Sabzevar Univ Med Sci 2015; 22(2): 238-45. [In Persian].
  2. Goodarzi G, Imani Nasab MH, Jahan Mehr N, Rostami K, Omidifar R, Mahooti F. Hospital performance assessment of Lorestan University of Medical Sciences. Payesh Health Monit 2012; 11(3): 295-302. [In Persian].
  3. Alimohammadi Ardakani M, Mirghafoori SH, Mirfakhradini SH, Damaki A, Momeni H. Evaluation of the relative efficiency of government hospitals in Yazd using DEA Model (Data Envelopment Analysis). J Shaheed Sadoughi Univ Med Sci 2009; 17(2): 67-75. [In Persian].
  4. Mehregan MR. Quantity models in organization performance analysis. Tehran, Iran: University of Tehran; 2004. [In Persian].
  5. Azimian M, Shahin A, Alinaghian M, Badri M. Integrative approach of DEA and malmquist for performance analysis of projects. Industrial Management Journal 2013; 5(1): 43-62. [In Persian].
  6. Xenos P, Nektarios M, Constantopoulos A, Yfantopoulos J. Two-stage hospital efficiency analysis including qualitative evidence: A Greek case. J Hosp Adm 2016; 5(3): 1-9.
  7. Almeida A, Frias R, Fique JP. Evaluating hospital efficiency adjusting for quality indicators: An application to Portuguese NHS hospitals. Health Econ Outcome Res 2015; 1(1): 103.
  8. Li H, Dong S. Measuring and benchmarking technical efficiency of public hospitals in Tianjin, China: A bootstrap-data envelopment analysis approach. Inquiry 2015; 52.
  9. Asandului L, Roman M, Fatulescu P. The efficiency of healthcare systems in Europe: A data envelopment analysis approach. Procedia Economics and Finance 2014; 10: 261-8.
  10. Kawaguchi H, Tone K, Tsutsui M. Estimation of the efficiency of Japanese hospitals using a dynamic and network data envelopment analysis model. Health care management science 2014; 17(2): 101-12.
  11. Mahfoozpour S, Pouragh B, Abedi Z, Satarivand S. Assessing efficiency in hospitals of Shahid Beheshti University of Medical Sciences using Data Envelopement Analysis Method. J Health Promot Manag 2016; 5(1): 11-20.
  12. Khalil Pour K, Jafarnezhad S. Efficiency evaluation of Urmia hospitals using data envelopment analysis (DEA). Indian Journal of Fundamental and Applied Life Sciences 2014; 5(S2): 217-25.
  13. Ghasemi S, Rjabi Gilan N, Soofi M, Goudarzi R. Measuring the technical efficiency of Kermanshah University of Medical Sciences hospitals, using data envelopment analysis method (DEA): 2005-2011 (Nonparametric Approach). J Rafsanjan Univ Med Sci 2015; 13(9): 739-48. [In Persian].
  14. Mollahaliloglu S, Kavuncubasi S, Yilmaz F, Younis MZ, Simsek F, Kostak M, et al. Impact of health sector reforms on hospital productivity in Turkey: Malmquist index approach. International Journal of Organization Theory & Behavior 2018; 21(2): 72-8.
  15. Mujasi PN, Kirigia JM. Productivity and efficiency changes in referral hospitals in Uganda: An application of malmquist total productivity index. Health Syst Policy Res 2016; 3: 1.
  16. Chang SJ, Hsiao HC, Huang LH, Chang H. Taiwan quality indicator project and hospital productivity growth. Omega 2011; 39(1): 14-22.
  17. Cheng Z, Tao H, Cai M, Lin H, Lin X, Shu Q, et al. Technical efficiency and productivity of Chinese county hospitals: An exploratory study in Henan province, China. BMG 2015; 5(9): 1-10.
  18. Guo H, Zhao Y, Niu T, Tsui KL. Hong Kong hospital authority resource efficiency evaluation: Via a novel DEA-Malmquist model and Tobit regression model. PloS one 2017; 12(9): e0184211.
  19. Ng YC. The productive efficiency of Chinese hospitals. China Economic Review 2011; 22(3): 428-39.
  20. Yang J, Zeng W. The trade-offs between efficiency and quality in the hospital production: Some evidence from Shenzhen, China. China Economic Review 2014; 31: 166-84.
  21. Chowdhury H, Zelenyuk V, Laporte A, Wodchis WP. Analysis of productivity, efficiency and technological changes in hospital services in Ontario: How does case-mix matter? Int J Prod Econ 2014; 150: 74-82.
  22. Stefko R, Gavurova B, Korony S. Efficiency measurement in healthcare work management using Malmquist indices. Polish Journal of Management Studies 2016; 13(1): 168-80.
  23. Hsu YC. The efficiency of government spending on health: Evidence from Europe and central Asia. Soc Sci J 2013; 50(4): 665-73.
  24. Raei B, Yousefi M, Rahmani K, Afshari S, Ameri H. Patterns of productivity changes in hospitals by using Malmquist-DEA Index: A panel data analysis (2011-2016). Australas Med J 2017; 10(10): 856-64.
  25. Azimian M, Badri MA, Javadi H. sensitivity analysis of projects efficiency in a multi-project environment based on data envelopment analysis. Int J Eng Sci 2013; 2(7): 259-65.