نوع مقاله : مقاله مروری نقلی

نویسندگان

1 دانشجوی دکتری تخصصی، انفورماتیک پزشکی، گروه انفورماتیک پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

2 استادیار، مدیریت اطلاعات سلامت، گروه مدارک پزشکی و فن‌آوری اطلاعات سلامت، دانشکده علوم پیراپزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

چکیده

امروزه با افزایش داده‌های ماشین محور حوزه پزشکی، تعامل بین استانداردهای مختلف واژگان، موضوع بسیاری از تحقیقات سال‌های اخیر بوده است. در پژوهش حاضر، روش‌های نگاشت SNOMED-CT (Systematized Nomenclature of Medicine-Clinical Terms) در فرایند توسعه نسخه یازدهم سیستم بین‌المللی کدگذاری بیماری‌ها 11-ICD (11-International Classification of Diseases) بررسی شد. مطالعه از نوع مروری نقلی بود و در آن پایگاه‌های االکترونیکی PubMed، ScienceDirect و موتور جستجوی Google Scholar با استفاده از ترکیب کلید واژه‌های ICD-11، SNOMED، Mapping، Alignment و Harmonization مورد جستجو قرار گرفت. در راستای تلفیق دو استاندارد، تحقیقات در پنج دسته روی موضوعات مفاهیم پایه در هستی‌شناسی، تفسیر موقعیت به جای تفسیر شرایط بالینی، هستی‌شناسی مشترک، روش هم‌ترازی معنایی و قوانین معنایی متمرکز شده بود. نتایج نشان داد که وجود تفاوت‌ها بین فرهنگ واژگان مبتنی بر هستی‌شناسی و طبقه‌بندی‌ها، نگاشت بین این دو محتوا را دچار چالش می‌نماید. در این میان، تکنیک‌های وب معنایی، راه‌حل‌های پیشرفته‌ای برای تطبیق و یکپارچگی داده‌های نامتجانس فراهم می‌آورد.

کلیدواژه‌ها

عنوان مقاله [English]

Medical Systematized Nomenclature in Development Process of 11th Revision of International Classification of Diseases

نویسندگان [English]

  • Ali Sanaeifar 1
  • Somayeh Fazaeli 2
  • Marziyhe Meraji 2

1 PhD Student, Medical Informatics, Department of Medical Informatics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

2 Assistant Professor, Health Information Management, Department of Health Information Technology and Medical Records, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran

چکیده [English]

Today, with increase in the volume of machine-oriented medical data, the role of interoperability and integrity has become clear. The goal of this research was to investigate the methods of integrating of Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) in the development process of International Classification of Diseases-11 (ICD-11). This study was a narrative review where electronic databases (PubMed, ScienceDirect) and Google Scholar search engine were used to search using predefined combined terms of "ICD-11 SNOMED", "Mapping Alignment Harmonization". Studies were focused on five categories including basic useful concepts for ontology, the interpretation of the code in a situation rather than interpretation of clinical conditions, situation, common ontology, alignment method, and semantic rules. The results of this study showed the differences between the ontology-based terminology and the classification, making mapping challenging. Meanwhile, Semantic Web techniques provide advanced solutions for the matching and integration of heterogeneous data.

کلیدواژه‌ها [English]

  • Health Information Interoperability
  • Semantic Web
  • International Classification of Diseases
  • Systematized Nomenclature of Medicine
  1. Rodrigues JM, Schulz S, Rector A, Spackman K, Millar J, Campbell J, et al. ICD-11 and SNOMED CT common ontology: Circulatory system. Stud Health Technol Inform 2014; 205: 1043-7.
  2. Abdelhak M, Grostick S, Hanken MA. Health information: Management of a strategic resource. 4th ed. Philadelphia, PA: Saunders; 2011.
  3. Nikiema JN, Jouhet V, Mougin F. Integrating cancer diagnosis terminologies based on logical definitions of SNOMED CT concepts. J Biomed Inform 2017; 74: 46-58.
  4. Rodrigues JM, Schulz S, Rector A, Spackman K, Ustun B, Chute CG, et al. Sharing ontology between ICD 11 and SNOMED CT will enable seamless re-use and semantic interoperability. Stud Health Technol Inform 2013; 192: 343-6.
  5. He Z, Geller J, Chen Y. A comparative analysis of the density of the SNOMED CT conceptual content for semantic harmonization. Artif Intell Med 2015; 64(1): 29-40.
  6. Schulz S, Rodrigues JM, Rector A, Spackman K, Campbell J, Ustun B, et al. What's in a class? Lessons learnt from the. Stud Health Technol Inform 2014; 205: 1038-42.
  7. Campbell JR, Brear H, Scichilone R, White S, Giannangelo K, Carlsen B, et al. Semantic interoperation and electronic health records: Context sensitive mapping from SNOMED CT to ICD-10. Stud Health Technol Inform 2013; 192: 603-7.
  8. Tudorache T, Falconer S, Noy NF, Nyulas C, Ustun TB, Storey MA, et al. Ontology development for the masses: Creating ICD-11 in WebProtege. Proceedings of the 17th International Conference on Knowledge Engineering and Knowledge Management, EKAW 2010; 2010 Oct 11-15; Lisbon, Portugal.
  9. Tanno LK, Calderon MA, Goldberg BJ, Akdis CA, Papadopoulos NG, Demoly P. Categorization of allergic disorders in the new World Health Organization International Classification of Diseases. Clin Transl Allergy 2014; 4: 42.
  10. Chute CG, Huff SM, Ferguson JA, Walker JM, Halamka JD. There are important reasons for delaying implementation of the new ICD-10 coding system. Health Aff (Millwood) 2012; 31(4): 836-42.
  11. Thun S, Dewenter H. ICD-11, ICHI and SNOMED CT-What do the standards mean for eHealth applications? Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61(7): 812-20. [In German].
  12. Rodrigues JM, Robinson D, Della M, V, Campbell J, Rector A, Schulz S, et al. Semantic alignment between ICD-11 and SNOMED CT. Stud Health Technol Inform 2015; 216: 790-4.
  13. Roberts R, Greenberg M, Richardsson H. Report of ICD-11 Revision Review [Online]. [cited 2015 Apr 14]; Available from: URL: https://www.who.int/classifications/icd/reportoftheicd11review14april2015.pdf?ua=1
  14. Rodrigues JM, Schulz S, Mizen B, Trombert B, Rector A. Scrutinizing SNOMED CT's ability to reconcile clinical language ambiguities with an ontology representation. Stud Health Technol Inform 2018; 247: 910-4.
  15. Vikstrom A, Skaner Y, Strender LE, Nilsson GH. Mapping the categories of the Swedish primary health care version of ICD-10 to SNOMED CT concepts: Rule development and intercoder reliability in a mapping trial. BMC Med Inform Decis Mak 2007; 7: 9.
  16. Horridge M, Parsia B, Noy NF, Musenm MA. Reasoning based quality assurance of medical ontologies: A case study. AMIA Annu Symp Proc 2014; 2014: 671-80.
  17. Schulz S, Rector AL, Rodrigues JM, Üstün B, Spackman KA. Ontology-based convergence of medical terminologies: SNOMED CT AND ICD-11. Proceedings of the eHealth 2012; 2012 May 10-11; Vienna, Austria.
  18. Jiang G, Solbrig HR, Chute CG. Using semantic web technology to support ICD-11 textual definitions authoring. J Biomed Semantics 2013; 4(1): 11.
  19. Jiang G, Solbrig H, Chalmers RJG, Spackman K, Rector AL, Chute C. A case study of ICD-11 anatomy value set extraction from SNOMED CT. Proceedings of the 2nd International Conference on Biomedical Ontology, ICBO 2011; 2011 Jul 26-30; Buffalo, NY, United States
  20. Üstün B, Case J, Chute CG, Rector A, Campbell JR, Solbrig H. S13: Experience in Harmonization of ICD-11 and SNOMED CT: Not Just Mapping. Proceedings of the AMIA 2015 Annual Symposium; 2015 Nov 14-18; San Francisco, CA, USA.
  21. Rodrigues JM, Schulz S, Mizen B, Rector A, Serir S. Is the application of SNOMED CT concept model sufficiently quality assured? AMIA Annu Symp Proc 2017; 2017: 1488-97.
  22. Tu W, Bodenreider O, Celik C, Chute C, Heard S, Jakob R, et al. A Content Model for the ICD-11 Revision (Technical Report BMIR-2010-1405). Stanford, CA: Stanford Center for Biomed Informatics Research; 2010.
  23. Rodrigues JM, Kumar A, Bousquet C, Trombert B. Using the CEN/ISO standard for categorial structure to harmonise the development of WHO international terminologies. Stud Health Technol Inform 2009; 150: 255-9.
  24. Schulz S, Rector A, Rodrigues JM, Spackman K. Competing interpretations of disorder codes in SNOMED CT and ICD. AMIA Annu Symp Proc 2012; 2012: 819-27.
  25. Tudorache T, Falconer S, Nyulas C, Noy NF, Musen MA. Will semantic web technologies work for the development of ICD-11? Berlin, Heidelberg, Germany: Springer Berlin Heidelberg; 2010. p. 257-72.
  26. Mamou M, Rector A, Schulz S, Campbell J, Solbrig H, Rodrigues JM. Representing ICD-11 JLMMS using IHTSDO Representation Formalisms. Stud Health Technol Inform 2016; 228: 431-5.
  27. Mamou M, Rector A, Schulz S, Campbell J, Solbrig H, Rodrigues JM. ICD-11 (JLMMS) and SCT Inter-Operation. Stud Health Technol Inform 2016; 223: 267-72.
  28. Jiang GD, Solbrig HR, Chute CG. Building standardized Semantic Web RESTful services to support ICD-11 revision. Proceedings of the 5th International Workshop on Semantic Web Applications and Tools for Life Sciences, SWAT4LS 2012; 2012 May 2-5; Paris, France.
  29. Sanaeifar A, Faraahi A, Tara M. SEPHYRES 1: A symptom checker based on semantic pain descriptors and weight spreading. Appl Med Inform 2016; 38(3-4): 105-16.
  30. Sanaeifar A, Tara M, Ahadi M, Bahari A, Faraahi A. SEPHYRES 2: A symptom checker based on semantic pseudo-fuzzy diagnostic model. Acta Health Medica 2017; 2(1): 129.
  31. Sanaeifar A, Tara M, Faraahi A, Mir Mousavi B, Ahadi M, Bahari A. SEPHYRES 2: Applying semantic-pseudo-fuzzy methods in medical diagnostic ontologies. International Journal of Medical Engineering and Informatics 2017; 10(3): 265-78.
  32. Sanaeifar A, Tara M, Ahadi M, Bahari A, Faraahi A. SEPHYRES: A medical diagnosis model based on semantic pseudo-fuzzy plan and radar-form interface. Appl Med Inform 2017; 39(1-2): 1-7.