نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، علم اطلاعات و دانش‌شناسی، گروه علم اطلاعات و دانش‌شناسی، دانشکده علوم اجتماعی، دانشگاه رازی، کرمانشاه، ایران

2 دانشیار، علم اطلاعات و دانش‌شناسی، گروه علم اطلاعات و دانش‌شناسی، دانشگاه پیام نور، تهران، ایران

3 کارشناس ارشد، علم اطلاعات و دانش‌شناسی، گروه علم اطلاعات و دانش‌شناسی، دانشکده علوم اجتماعی، دانشگاه رازی، کرمانشاه، ایران دانشگاه رازی، کرمانشاه، ایران

4 استادیار، علم اطلاعات و دانش‌شناسی، گروه پژوهشی مدیریت اطلاعات، مرکز منطقه‌ای اطلاع‌رسانی علوم و فن‌آوری، شیراز، ایران

چکیده

مقدمه: خوشه‌بندی مفاهیم و شناسایی حوزه‌های جدید مطالعاتی، از جمله کاربردهای جدید مطالعات ترسیم ساختار علم می‌باشد. پژوهش حاضر با هدف تحلیل هم‌واژگانی و بررسی ساختار فکری دانش در تحقیقات حوزه سردردهای ضربان‌دار انجام شد.روش بررسی: این پژوهش از نوع علم‌سنجی بود و در آن از فنون تحلیل هم‌رخدادی واژگان و تحلیل شبکه اجتماعی استفاده گردید. جامعه آماری مطالعه را تمامی تولیدات علمی حوزه سردردهای ضربان‌دار نمایه شده در پایگاه Web of Science در بازه زمانی سال‌های 2005 تا 2017 تشکیل داد. تولیدات علمی تحقیق حاضر، 35050 رکورد بود. به منظور تحلیل هم‌واژگانی، 41037 کلید واژه استخراج شد. پس از یکسان‌سازی، ماتریس هم‏واژگانی تهیه گردید و با استفاده از روش تحلیل خوشه‌ای مورد تحلیل قرار گرفت.یافته‌ها: از نظر فراوانی، کلید واژه «میگرن»، بیشترین فراوانی را داشت. یافته‌های مربوط به خوشه‌بندی سلسله مراتبی به روش Ward نیز منجر به شکل‌گیری 9 خوشه در این حوزه گردید. «فشار خون درون جمجمه»، «سردرد و درمان»، «تحریک عصبی و سردرد» و «آسیب تروماتیک مغز» خوشه‌های اصلی را تشکیل داد. تراکم و مرکزیت رتبه خوشه‌های حاصل از تحلیل هم‏واژگانی نشان ‏داد که خوشه «سرگیجه» بیشترین مرکزیت رتبه و خوشه «اضطراب» بیشترین مقدار تراکم را داشت.نتیجه‌گیری: با استفاده از تحلیل هم‏رخدادی واژگان، به ‌خوبی می‌توان ساختار علمی یک حوزه را مشخص نمود. با توجه ‏به فراوانی کلید واژه‌ها و خوشه‌های به ‌دست ‌آمده از نمودار راهبردی، مشخص گردید که زمینه‌های موضوعی «تحمل‌پذیری» و «تحریک عصبی و سردرد»، مهم‌ترین زمینه‌های نوظهور در این حوزه می‌باشند.

کلیدواژه‌ها

عنوان مقاله [English]

Identifying Emerging Areas and Map Scientific Structure of Throbbing Headaches

نویسندگان [English]

  • Saleh Rahimi 1
  • Faramarz Soheili 2
  • Yosef Amininia 3
  • Farshid Danesh 4

1 Knowledge and Information Science, Department of Knowledge and Information Science, School of Social Sciences, Razi University, Kermanshah, Iran

2 Associate Professor, Knowledge and Information Science, Department of Knowledge and Information Science, Payame Noor University, Tehran, Iran

3 MSc, Knowledge and Information Science, Department of Knowledge and Information Science, School of Social Sciences, Razi University, Kermanshah, Iran

4 Assistant Professor, Knowledge and Information Science, Information Management Research Department, Regional Information Center for Science and Technology, Shiraz, Iran

چکیده [English]

Introduction: New applications of studies to draw the structure of science include clustering concepts and identifying new fields of studies. This study was co-word analysis of intellectual structure of knowledge in the field of throbbing headaches.Methods: This was a scientometric study conducted through co-word and social network analysis techniques. The data consisted of the total scientific production of throbbing headaches indexed in the Web of Science from the year 2005 to 2017 with 35050 records. After unifying, the co-wording matrix was provided and through cluster analysis method, the data were analyzed.Results: The most often word was migraine keyword in the field of throbbing headaches. Moreover, the results of hierarchical clustering by the Ward method led to the formation of nine clusters in this area. The major clusters were “intracranial hypotension”, “headache and treatment”, “nervous stimulation and headache”, and “traumatic injury”. The density and degree centrality of the cluster ranking from the analysis of the co-word indicated that the vertigo cluster had the highest concentration and anxiety cluster of the highest density.Conclusion: The co-word analysis can uncover the intellectual structure of scientific disciplines. Due to the frequency of obtained keywords and clusters, the results of the two-dimensional scale showed that the matic areas of “tolerability” and “nervous stimulation and headache” were the most important emerging fields.

کلیدواژه‌ها [English]

  • Headache
  • Throbbing Headaches
  • Knowledge Discovery
  • Network Meta-Analysis
  1. He Q. Knowledge discovery through co-word analysis. Library Trends 1999; 48(1): 133-59.
  2. Mane KK, Borner K. Mapping topics and topic bursts in PNAS. Proc Natl Acad Sci USA 2004; 101(Suppl 1): 5287-90.
  3. Assefa SG, Rorissa A. A bibliometric mapping of the structure of STEM education using co-word analysis. J Am Soc Inf Sci Tec 2013; 64(12): 2513-36.
  4. Kumar S, Mohd Jan J. Discovering knowledge landscapes: An epistemic analysis of business and management field in Malaysia. Procedia Soc Behav Sci 2012; 65: 1027-32.
  5. Negro A, Delaruelle Z, Ivanova TA, Khan S, Ornello R, Raffaelli B, et al. Headache and pregnancy: A systematic review. J Headache Pain 2017; 18(1): 106.
  6. Sohaili F, Shaban A, Khase A. Intellectual structure of knowledge in information behavior: a co-word analysis. Human Information Interaction 2016; 2(4): 21-36. [In Persian].
  7. Shen L, Wang S, Dai W, Zhang Z. Detecting the interdisciplinary nature and topic hotspots of robotics in surgery: Social network analysis and bibliometric study. J Med Internet Res 2019; 21(3): e12625.
  8. Kocak M, Garcia-Zorita C, Marugan-Lazaro S, Cakir MP, Sanz-Casado E. Mapping and clustering analysis on neuroscience literature in Turkey: A bibliometric analysis from 2000 to 2017. Scientometrics 2019; 121(3): 1339-66.
  9. Hamdami M, Abdollahi MA, Mirmobini S, Moein S. Trends in neuroscience in Iran: A scientometric analysis for mapping and clustering neuroscience literature from 2000 to 2019. Proceedings of the 8th Basic and Clinical Neuroscience Congress; 2019 Dec 18-20; Tehran, Iran.
  10. Zhang T, Chi H, Ouyang Z. Detecting research focus and research fronts in the medical big data field using co-word and co-citation analysis. Proceedings of the IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS); 2018 Jun 28-30; Exeter, Devon, UK. p. 313-20.
  11. Zhao F, Shi B, Liu R, Zhou W, Shi D, Zhang J. Theme trends and knowledge structure on choroidal neovascularization: A quantitative and co-word analysis. BMC Ophthalmol 2018; 18: 86.
  12. Andersen JP, Krogsgaard K, Engel AM, Schneider JW. Mapping international impact of Danish neuroscience from 2004 to 2015 using tailored scientometric methodology. Eur J Neurosci 2018; 47(3): 193-200.
  13. Xie P. Study of international anticancer research trends via co-word and document co-citation visualization analysis. Scientometrics 2015; 105(1): 611-22.
  14. Amudha S S, Sevukan R. indian neuroscience research, 1999-2013: A scientometric analysis. Collnet J Scientometr Inf Manag. 2014; 8(2): 329-40.
  15. Ashrafi F, Mohammadhassanzadeh H, Shokraneh F, Valinejadi A, Johari K, Saemi N, et al. Iranians' contribution to world literature on neuroscience. Health Info Libr J 2012; 29: 323-32.
  16. Chitra V, Jeyshankar R. Growth of literature in neuroscience: A scientometric study (1972-2011). Journal of Advances in Library and Information Science 2012; 1(4): 201-10.
  17. Bala A, Gupta BM. Mapping of Indian neuroscience research: A scientometric analysis of research output during 1999-2008. Neurol India 2010; 58(1): 35-41.
  18. An XY, Wu QQ. Co-word analysis of the trends in stem cells field based on subject heading weighting. Scientometrics 2011; 88(1): 133-44.
  19. Zhang W, Zhang Q, Yu B, Zhao L. Knowledge map of creativity research based on keywords network and co-word analysis, 19922011. Qual Quant 2015; 49(3): 1023-38.
  20. Raeeszadeh M, Karamali M. Scientific mapping of military trauma papers using co-word analysis in MEDLINE. J Mil Med 2018; 20(5): 476-87. [In Persian].
  21. Danesh F, Ghavidel S. Visualizing the clusters and dynamics of HPV research area. Iran J Med Microbiol 2019; 13(4): 266-78. [In Persian].
  22. Makkizadeh F, Hazeri A, Hosininasab S, Soheili F. Thematic analysis and scientific mapping of papers related to depression therapy in PubMed. J Health Adm 2016; 19(65): 51-63. [In Persian].
  23. Shargh A, Mohammadhassanzadeh H, Johari K, Valinejadi A, Molaei A, Amanollahi A, et al. The study of the presence of Iranian neuroscience in ISI database based on scientometric factors. J Health Adm 2011; 14(44): 61-70. [In Persian].
  24. Khasseh A A, Soosaraei M, Fakhar M. Cluster analysis and mapping of Iranian researchers in the field of parasitology: With an emphasis on the co-authoreship indicators and H index. Iran J Med Microbiol 2016; 10(2): 63-74. [In Persian].
  25. Hu CP, Hu JM, Deng SL, Liu Y. A co-word analysis of library and information science in China. Scientometrics 2013; 97(2): 369-82.
  26. Yang A, Lv Q, Chen F, Wang D, Liu Y, Shi W. Identification of recent trends in research on vitamin D: A quantitative and co-word analysis. Med Sci Monit 2019; 25: 643-55.
  27. Yang Y, Wu M, Cui L. Integration of three visualization methods based on co-word analysis. Scientometrics 2012; 90(2): 659-73.