نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری تخصصی، علم اطلاعات و دانششناسی، گروه علوم ارتباطات و دانششناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 استاد، علم اطلاعات و دانششناسی، گروه علوم ارتباطات و دانششناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 دانشیار، ریاضی کاربردی، گروه ریاضی کاربردی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
4 دانشیار، علم اطلاعات و دانششناسی، گروه علوم ارتباطات ودانش شناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
چکیده
هدف: با توجه به اهمیت و جایگاهی که حوزه غدد درونریز در بخش سلامت دارد، تسهیل بازیابی اطلاعات در این حوزه میتواند بسیار مهم باشد. مطالعه حاضر با هدف مدلسازی موضوعی مقالات منتشر شده پژوهشگران ایرانی در حوزه غدد درونریز و متابولیسم در پایگاه استنادی علوم انجام گرفت.روش بررسی: این تحقیق از نوع توصیفی بود و با روش متنکاوی انجام شد. چکیده مقالات با استفاده از کلید واژههای منتخب سرعنوان موضوعی پزشکی MeSH (Medical Subject Headings) از پایگاه استنادی علوم استخراج گردید. 5552 مقاله از سال 1977 تا سال 2019 بازیابی شد. سپس متن چکیدهها در نرمافزار MATLAB مورد تحلیل و بررسی قرار گرفت و دستهبندی شد.یافتهها: دستههای موضوعی متشکل از 20 واژه و در 48 دسته استخراج گردید. بیماری دیابت با 7145 بار تکرار، بیشتر از سایر موضوعات مورد توجه پژوهشگران ایرانی قرار گرفته است. دسته موضوعی مربوط به بیماریهای سندرم متابولیک با بیشترین تعداد مقالات (304 مقاله) و دسته موضوعی شماره 47 که مربوط به بیماریهای نرمی استخوان بود، کمترین تعداد مقالات (51 مقاله) را به خود اختصاص داد.نتیجهگیری: پژوهشگران ایرانی به تحقیقاتی با موضوع سندرم متابولیک بیشتر و به موضوعاتی مانند نرمی استخوان کمتر پرداخته بودند. مباحثی شامل Dwarfism، Parathyroid Diseases، Pituitary Diseases، Gonadal Disorders، Polyendocrinopathies و Autoimmune که در موضوعات حاصل از مدلسازی موضوعی وجود نداشت، بیانگر خلأ موجود در پژوهشهای محققان ایرانی میباشد که بر لزوم توجه بیشتر بر این حوزهها تأکید میشود.
کلیدواژهها
عنوان مقاله [English]
Analyzing the Status of Endocrinology and Metabolic Research in Iran Using Text Mining Methods
نویسندگان [English]
- Omolbanin Asadi-Ghadiklaei 1
- Nadjla Hariri 2
- Maryam Khademi 3
- Fahimeh Babalhavaeji 4
1 PhD Student, Knowledge and Information Science, Department of Communication and Knowledge Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Professor, Knowledge and Information Science, Department of Communication and Knowledge Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Associate Professor, Applied Mathematics, Department of Applied Mathematics, South Tehran Branch Islamic Azad University, Tehran, Iran
4 Associate Professor, Knowledge and Information Science, Department of Communication and Knowledge Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]
Introduction: Due to the importance and status of the endocrine field in the health sector, facilitating information retrieval in this field seems to be important. This study endeavored to run topic modeling of articles published by Iranian researchers in the field of endocrinology and metabolism in the science citation database.Methods: This descriptive study was done by text mining method. In this study, abstracts of articles were extracted from the science citation database using selected keywords of Medical Subject Headings (MeSH). 5552 articles were retrieved from 1977 to 2019, then the text of abstracts was analyzed and categorized in MATLAB software.Results: Subject categories with 20 items were extracted in 48 categories. Diabetes with 7145 recurrences has been considered by Iranian researchers more than other topics. Subject category related to metabolic syndrome diseases had the highest number of articles (304 articles) and subject category No. 47 which was related to osteoporosis had the lowest number of articles (51 articles).Conclusion: Iranian researchers have done more research on metabolic syndrome and less research on osteoporosis. Topic categories including Dwarfism, Parathyroid Diseases, Pituitary Diseases, Gonadal Disorders, Polyendocrinopathies, and Autoimmune that did not exist in the topics resulting from topic modeling indicate a gap in the research of Iranian researchers, that emphasizes the need for more attention to these areas.
کلیدواژهها [English]
- Topic Modeling
- Endocrinology
- Metabolism
- Text Mining
- Latent Dirichlet Allocation
- Dieng AB, Ruiz FJR, Blei DM. Topic modeling in embedding spaces. Trans Assoc Comput Linguist 2020; 8: 439-53.
- Kandula S, Curtis D, Hill B, Zeng-Treitler Q. Use of topic modeling for recommending relevant education material to diabetic patients. AMIA Annu Symp Proc 2011; 2011: 674-82.
- Liu L, Tang L, Dong W, Yao S, Zhou W. An overview of topic modeling and its current applications in bioinformatics. SpringerPlus 2016; 5(1): 1608.
- Saberi MK, Isfandyari Moghaddam A. Assessment of web citation accessibility and decay of health information and medical librarianship articles indexed In ISI. Health Inf Manage 2011; 8(2): 189-97. [In Persian].
- Lee KW, Morsi A, Naga O. Endocrine disorders. In: Naga O, editor. pediatric board study guide: A last minute review. Cham, Switzerland: Springer International Publishing; 2015. p. 403-33.
- Heshmati H, Behnampour N, Khorasani F, Moghadam Z. Prevalence of chronic complications of diabete and its related factors in referred type 2 diabetes patients in Freydonkenar diabetes center. Journal of Neyshabur University of Medical Sciences 2014; 1(1): 36-43. [In Persian].
- Mohammadi F, Shekofteh M, Kazerani M. Iran’s scientific publications in the field of endocrinology and metabolism in the Web of Science: A scientometric analysis. Iran J Endocrinol Metab 2020; 22(2): 127-36. [In Persian].
- Azizi F. Rank of Iranian endocrinology production in the world and Southwest Asia. Iran J Endocrinol Metab 2014; 16(4): 231-4. [In Persian].
- Emami Z, Khamseh ME, Madani NH, Hariri N, Alibeyk MR, Ghadiqolaei OA. Trend of scientific productions in the field of Endocrinology and Metabolism in Middle East countries during 2007-2013. null 2018; 12(1): 55-71.
- Shahmoradi L, Ramezani A, Atlasi R, Namazi N, Larijani B. Visualization of knowledge flow in interpersonal scientific collaboration network endocrinology and metabolism research institute. J Diabetes Metab Disord 2021; 20(1): 815-23.
- Wang L, Zhang Y, Zhang Y, Xu X, Cao S. Prescription function prediction using topic model and multilabel classifiers. Evid Based Complement Alternat Med 2017; 2017: 8279109.
- Hofmann T. Probabilistic latent semantic analysis. arXivc 2021; 1301.6705.
- Taghva, K, Beckley, R, Sadeh, M. A list of farsistopwords, Technical Report 2003-01. Las Vegas, NV: Information Science Research Institute, University of Nevada; 2003.
- Brown P, Della Pietra S, Pietra V, Lai J, Mercer R. An estimate of an upper bound for the entropy of English. Comput Linguist 1992; 18(1): 31-40.
- Zhao W, Chen JJ, Perkins R, Liu Z, Ge W, Ding Y, et al. A heuristic approach to determine an appropriate number of topics in topic modeling. BMC Bioinform 2015; 16(13): S8.
- Ray SK, Ahmad A, Kumar C. Review and implementation of topic modeling in Hindi. Appl Artif Intell 2019; 33(11): 979-1007.
- Larijani B. Iranian National Service Framework for Diabetes. Tehran, Iran: National Committee for Control and Prevention of Noncommunicable Diseases; 2017. p. 22. [In Persian].
- Larijani B, Farzadfar F, Nasli E, Naderi Magham S, Peikari N, Sharghi S, et al. Iranian National Service Framework for Diabetes. Tehran, Iran: National Committee for Control and Prevention of Noncommunicable Diseases; 2017. p. 22. [In Persian].
- Azimi-Nezhad M, Herbeth B, Siest G, Dade S, Ndiaye NC, Esmaily H, et al. High prevalence of metabolic syndrome in Iran in comparison with France: What are the components that explain this? Metab Syndr Relat Disord 2012; 10(3): 181-8.
- Wang Y, He W. Endogenous mitochondrial aldehyde dehydrogenase-2 as an Antioxidant in liver. In: Patel VB, Rajendram R, Preedy VR, editors. The liver. Boston, MA: Academic Press; 2018. p. 247-59.
- Sarrafzadegan N, Mohammmadifard N. Cardiovascular disease in Iran in the last 40 years: Prevalence, Mortality, morbidity, challenges and strategies for cardiovascular prevention. Arch Iran Med 2019; 22(4): 204-10.
- Khosravi-Boroujeni H, Mohammadifard N, Sarrafzadegan N, Sajjadi F, Maghroun M, Khosravi A, et al. Potato consumption and cardiovascular disease risk factors among Iranian population. Int J Food Sci Nutr 2012; 63(8): 913-20.
- Haghpanah V, Soliemanpour B, Heshmat R, Mosavi-Jarrahi AR, Tavangar SM, Malekzadeh R, et al. Endocrine cancer in Iran: Based on cancer registry system. Indian J Cancer 2006; 43(2): 80-5.
- Khodaeian M, Enayati S, Tabatabaei-Malazy O, Amoli MM. Association between genetic variants and diabetes mellitus in Iranian populations: A systematic review of observational studies. J Diabetes Res 2015; 2015: 585917.
- Koohi F, Salehiniya H, Mohammadian Hafshejani A. Trends in mortality from cardiovascular disease in Iran from 2006-2010. J Sabzevar Univ Med Sci 2015; 22(4): 630-8. [In Persian].
- Pirdehghan A, Razavi Z, Rajabi R. Evaluation of the factors influencing diabetic control among adolescents with type 1 diabetes. Avicenna J Clin Med 2020; 26(4): 227-33. [In Persian].
- Ardeshir LF, Kalantar Motamedi SM, Keshtkar AA, Khashayar P, Koleini Z, Rahim F, et al. The relation between serum vitamin D levels and blood pressure: A population-based study. Acta Med Iran 2014; 52(4): 290-7.
- Abolhassani F, Mohammadi M, Soltani A. Burden of osteoporosis in Iran. Iran J Public Health 1970; 33(Suppl 1): 18-28.
- Heshmat R, Mohammad K, Majdzadeh SR, Forouzanfar MH, Bahrami A, Ranjbar Omrani G, et al. Vitamin D Deficiency in Iran: A Multi-center Study among Different Urban Areas. Iran J Public Health 1970; 37(Suppl 2): 72-8.
- Esteghamati A, Meysamie A, Khalilzadeh O, Rashidi A, Haghazali M, Asgari F, et al. Third National Surveillance of Risk Factors of Non-Communicable Diseases (SuRFNCD-2007) in Iran: Methods and results on prevalence of diabetes, hypertension, obesity, central obesity, and dyslipidemia. BMC Public Health 2009; 9: 167.
- Ebrahimi H, Emamian MH, Hashemi H, Fotouhi A. Dyslipidemia and its risk factors among urban middle-aged Iranians: A population-based study. Diabetes Metab Syndr 2016; 10(3): 149-56.